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The authors relate the proper orthogonal modes, as applied in discrete vibration systems,
to normal modes of vibration in systems with a known mass matrix. In the case of
undamped free vibration, the proper orthogonal modes converge to the linear normal
modes as the amount of data increases. This interpretation is also practical for lightly
modally damped systems. Forced resonances lead to proper orthogonal modes which
approximate vibration modes. A particular case of non-linear normal modes are looked
at in which the motion of a single mode follows a curve in the co-ordinate space. In this
case, the proper orthogonal modes represent the principal axes of inertia formed by the
distribution of data on the modal co-ordinate curve. More generally, the proper orthogonal
modes represent the principal axes of inertia of the data.
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1. INTRODUCTION TO PROPER ORTHOGONAL DECOMPOSITION

The goal of this paper is to examine the relationship between proper orthogonal modes,
which are explained below, and normal modes of vibration. The focus included linear
modes of vibration and a certain class of non-linear normal modes.

The proper orthogonal decomposition (POD), also known as Karhunen–Loève
decomposition, is emerging as a useful experimental tool in dyanmics and vibration.
Lumley [1] traced the idea back to independent investigations by Kosambi (1943), Loève
(1945), Karhunen (1946), Pougachev (1953), and Obukhov (1954). It is primarily a
statistical formulation, although it facilitates modal projections of partial differential
equations into reduced-order deterministic models.

While the method was first applied to turbulence by Lumley in 1967 [2], it had not caught
the attention of structural dynamicists until very recently. The method quantifies spatial
coherence in an oscillating system with several sensors. In this sense, POD has been useful
in uncovering spatial coherence in turbulence [1–3] and structures [4, 5], and determining
the number of active state variables in a system [3–5]. Proper orthogonal modes (POMs)
have been treated as empirical modal bases for discretizing partial differential equations
by Galerkin projection in turbulence applications [3] and more recently in structural
dynamics [6–8].

Until now the POMs have been interpreted mainly as empirical system modes. In the
analysis of turbulence, the POMs have been shown to represent the optimal distributions
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of kinetic energy or power, and the proper orthogonal values (POVs) indicate the power
associated with these principal distributions [3, 5].

Application of POD to structures typically requires the sensed displacements of a
dynamical system at M locations. These displacements are labeled x1 (t), x2 (t), . . . , xM (t).
When the displacements are sampled N times, one can form displacement–history arrays,
such that xi =(xi (t1), xi (t2), . . . , xi(tN ))T, for i=1, . . . , M. The means are often
subtracted from the displacement histories. In performing the proper orthogonal
decomposition, these displacement histories are used to form an N×M ensemble matrix,

X=[x1, x2, . . . , xM ].

Each row of X represents a point in the co-ordinate space at a particular instant in
time. The M×M correlation matrix R=(1/N)XTX is then formed. Since R is real
and symmetric, its eigenvectors form an orthogonal basis. The eigenvectors of R are
the proper orthogonal modes, and the eigenvalues are the proper orthogonal values.

In this paper it is pointed out how the POMs, formulated in this way, are related to
linear and non-linear modes of vibration.

2. LINEAR VIBRATION MODES

This section considers undamped free vibrations, and includes comments on modally
damped and generally damped free vibrations, and also on forced vibrations.

2.1.  

The equations of motion of an unforced, undamped linear multi-degree-of-freedom
vibration system are written as

Mẍ+Kx= 0. (1)

For a large class of structures, M and K are symmetric and positive definite. The modal
vectors v, when normalized with respect to the mass matrix, satisfy the orthogonality
condition vT

i Mvj = dij . A co-ordinate transformation x=M−1/2q can be made [9]. The
system can then be recast as

q̈+M−1/2KM−1/2q= 0, (2)

or q̈+Aq= 0. The advantages of this representation are that its matrices are still
symmetric and the effective mass matrix is the identity. Thus, given a known mass
matrix, the system can be recast as an equivalent symmetric system with an identity mass
matrix.

With this in mind, the free vibrations of a class of problems for which the mass matrix
in the differential equation of motion is the identity are discussed. The normalized modal
vectors vi of such a system satisfy the orthogonality property vT

i vj = dij .
Suppose a vibration consists of several normal modes. One can express the motion as

x(t)=A1 sin (v1 t−f1)v1 +A2 sin (v2 t−f2)v2 + · · ·+AM sin (vM t−fM )vM , (3)

where the components of x(t) are the displacements of particular co-ordinates, vi are the
modal vectors, and the constants Ai and fi depend on the initial conditions. For short,
equation (3) is written as

x(t)= e1 (t)v1 + e2 (t)v2 + · · ·+ eM (t)vM , (4)

where the functions ei (t) represent the time modulations of the modes.
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Then the ensemble matrix has the form

X=[x(t1) · · · x(tN )]T = [e1 vT
1 + · · ·+ eM vT

M
],

where the vectors ei are N×1 arrays of the functions ei (t) evaluated at times
t= t1, t2, . . . , tN .

One can check whether a modal vector is actually a POM by post multiplying the matrix
R by a modal vector. Thus,

Rvj =(1/N)XTXvj =(1/N) [e1 vT
1 + · · ·+ eM vT

M ]T[e1 vT
1 + · · ·+ eM vT

M ]vj .

The orthogonality relation vT
i vj = dij reduces the matrix product to

Rvj =(1/N) (v1 eT
1 ej +· · ·+ vM eT

M ej ). (5)

As long as the frequencies of the modes are distinct, each term vi eT
i ej /N will disappear

as N:a except for the term vj eT
j ej which is proprotional to vj . Hence, an eigenvector

of R, and thus a POM, converges to a modal vector.
If the structural system is formulated such that the mass matrix is not proportional to

the identity matrix, the normalized modal vectors satisfy the orthogonality relation
vT

i Mvj = dij . One can define R
 =RM, which is not a customary way of staging the POD
process. (RM is not symmetric, so technically one should no longer use the term
‘‘orthogonal.’’ However, this paper continues to use the POD acronyms and terminology
since the process remains the same.) Then, for large numbers of data, vj is a proper
mode, as can be seen by post-multiplying R
 by vj , or R by Mvj , and taking a limit to obtain
again a vector which is proportional to vj . Thus, if the POD were carried out on the
adjusted matrix R
 =RM, the resulting proper modes would converge to the system
eigenvectors.

2.2.   

As an example, a chain of non-dimensional masses of values 2, 1, and 1 non-dimensional
units, connected in series from a wall through three springs of non-dimensional stiffness
k=1 can be considered. The mechanical model is shown in Figure 1. The equations of
motion are Mẍ+Kx= 0, where the matrices have values

M= &200 0
1
0

0
0
1' and K= & 2

−1
0

−1
2

−1

0
−1

1'.
This system has modal vectors v̂1 = (0·3602, 0·5928, 0·7204)T, v̂2 = (0·7071, 0, −0·7071)T,

and v̂3 = (0·2338, −0·8524, 0·4676)T, as computed by Matlab, which are orthogonal with

Figure 1. The mass–spring model used for the linear example has k=1 and m=1.
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respect to the mass matrix. Matlab does not normalize the vectors with respect to the mass
matrix, rather it gives all eigenvectors an Euclidean norm of one. They are left in the
Matlab-normalized form so they can be compared directly with POMs which are also
computed by Matlab. The corresponding natural frequencies are v1 =0·4209, v2 =1·0000,
and v3 =1·6801.

The natural co-ordinates, or modal co-ordinates, are defined by a transformation of
variables such that x=Ve, where V=[v1, v2, v3], and the vectors vi are normalized with
respect to the mass matrix. If the initial displacements are x(0)= (1, 0, 0)T and the initial
velocities are zero, then the initial displacements in the natural co-ordinate system are

e(0)=VTMx(0)= (0·6777, 1·1547, 0·4554)T,

and the modal response is e(t)= (0·6777 cos v1 t, 1·1547 cos v2 t, 0·4554 cos v3 t)T. The
response in the original co-ordinate system is x(t)=Ve(t). This response was sampled
with a sampling rate h, and the matrix R computed. The eigenvectors of RM should then
be similar to the modal vectors vj . (Alternatively, one could apply the transformation
q=M1/2x and use the eigenvectors from the correlation matrix based on the data in q.)

POMs for various numbers of data obtained with various sampling rates
were computed. In one test N=200 samples was used with a step size of
h=0·1493 non-dimensional time units (two fundamental periods), and POMs
of uT

1 = (0·4107, 0·5898, 0·6953)T, uT
2 = (0·6714, −0·0645, −0·7383)T, and uT

3 = (−0·2171,
0·8558, −0·4695)T obtained, with corresponding POVs of l1 =0·2288, l2 =0·6686, and
l3 =0·1038. Comparing the POMs to the Matlab-normalized eigenvectors vi , and
adjusting for sign changes, the mean of the norms of the errors was 0·0513. In the second
test, for N=200 samples, and a step size of h=0·2986 non-dimensional time units (four
fundamental periods), POMs of uT

1 = (0·3628, 0·5870, 0·7238)T, uT
2 = (0·7078, −0·0037,

−0·7064)T, and uT
3 = (−0·2293, 0·8556, −0·4641)T were obtained, with corresponding

POVs of l1 =0·2308, l2 =0·6703, and l3 =0·1040. The mean error norm was 0·0059. In
the third test, for N=400 samples, and a step size of h=0·1493 non-dimensional time
units (four fundamental periods), POMs of uT

1 = (0·3611, 0·5921, 0·7204)T,
uT

2 = (0·7078, −0·0038, −0·7064)T, and uT
3 = (−0·2315, 0·8526, −0·4685)T were obtained,

with corresponding POVs of l1 =0·2302, l2 =0·6786, and l3 =0·1037. The mean error
norm was 0·0025.

The tests indicate that the POMs agree with the system eigenvectors. In this case, the
error decreases with increasing numbers of samples, and with increasing time record length.

Furthermore, the POVs vary with the amplitudes of the modal co-ordinates, which are
given by the elements of e(0). A calculation based on equation (5) shows that each POV
of R
 converges to the mean squared value of the corresponding modal co-ordinate times
the generalized modal mass associated with the normalization of the modal co-ordinate.
Here, the quantities (1/2)ei (0)2vT

i Mvi =(1/2)ei (0)2, for i=1, 2, and 3, have the values
0·2297, 0·6667, and 0·1037, which correspond closely to the proper values. The
interpretation that the POVs represent system energies is thus respective to the signals, and
not necessarily reflective of the mechanical contribution of stiffness, frequency or velocity.
This interpretation is addressed in section 3.

Among the many examples which have been tried, the authors have encountered an
example which yielded poor results. The reason will be made clear, and will be discussed
in section 5.

2.3.    

For the case of damped systems, one may run into difficulty applying the ideas above,
since they require that the limN:a eT

i ej /N=0, for i$ j, and limN:a eT
i ei /N$ 0, and for
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damped free vibrations, the functions ei (t):0 themselves as t:a. However, N is finite
in practice, so one might have some luck if the modal damping factors are low enough
that several cycles of vibration may be observed.

For the case of modal damping, where the modes are synchronous and real, the above
results are applicable in some practical cases. As a free vibration example, modal damping
was applied to the linear example above, with N=400 samples and h=0·1493 (four
fundamental periods). When modal damping factors of z=0·1, 0·05, and 0·01 were
applied to each mode in three separate simulations, the mean of the norm of the errors
between the resulting POMs and the natural modes were 0·1126, 0·0351, and 0·0036,
respectively. Intuitively, as the modal damping decreases, the modal oscillations are
sustained longer, and results improve.

For the case of general damping, one might consider a correlation matrix built out of
ensembles of not just displacements but velocities also [10, 11]. This has not been the
usual way of applying POMs in structural dynamics, although there is nothing stopping
it as long as the measurements are available. The normal modes are planes in the
state space. The authors have not looked at how the POMs might span the normal
modal planes.

2.4.    

In the case of steady state harmonically forced vibrations, equation (5) will still hold.
However, each of the time modulation terms ei (t) will have the same frequency. Therefore,
none of the limits limn:a eT

i ej /N are zero. One can no longer say that the POMs are
convergent to the modal vectors vi .

Nonetheless, if one were to have one of the modes in resonance, such that one of the
ei (t) had a much larger amplitude than the others, then the POM associated with the
largest POV would approximate the resonating mode shape. The quality of the
approximation would depend on the relative amplitude of the resonant modal response
with respect to the non-resonating modal responses. The non-resonating mode shapes
would not be detectable by the POD. If a single mode vi were active, such that
R=1/Nvi eT

i ei vT
i , then that mode would be an eigenvalue of R, and hence a proper

orthogonal mode, regardless of the mass distribution.
As an example, a sinusoidal force was applied to the first mass in the linear example.

In such case, the relative forcing vector on the mass-normalized modal co-ordinates is
(0·3389, 0·5774, 0·2277)T. Each resonance was reached separately by setting the frequency
of the excitation to the value of v=vi z1−2z2. Four cycles of steady state vibration
were sampled such that 400 samples were made. The norm of the difference between the
dominant POM and the resonant modal vector was calculated for each resonance case.
For the case of z=0·01 for each resonated mode, the norms of the errors were 8·7×10−5,
2·6×10−4, and 1·9×10−4, for the first, second, and third resonances. The ratios between
the two largest POVs were 18 410, 4522, and 140·0. For the case of z=0·05 for each mode,
the norms of the residuals were 0·0022, 0·0066, and 0·0049, for the first, second, and third
resonances. The ratios between the two largest POVs were 745·3, 181·0, and 5·574. For
the case of z=0·1 for each mode, the norms of the errors were 0·0086, 0·0263, and 0·0318,
for the first, second, and third resonances. The ratios between the two largest POVs were
193·3, 45·29, and 1·374.

The accuracy of these test results depends in part on the relative forcing produced on
the modal co-ordinates, the quality of resonance, and the frequency ratios in the modal
resonance curves. As z decreases, the modal resonance quality increases, and the results
improve. The ratio between the two largest POVs hint at what kind of quality can be
expected, since the results converge as this ratio becomes very large.
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3. GEOMETRIC INTERPRETATION OF THE POMS

This discussion parallels the interpretation of the singular systems analysis of a
phase-space reconstruction [13]. If one considers NR=XTX, then the normalized
eigenvectors v of R satisfy

XTXv=Nlv.

The above equation can be premultiplied by vT to obtain vTXTXv=Nl. It is helpful to take
a closer look at Xv. Since X consists of columns of sampled data from each co-ordinate,
the rows of X represent co-ordinate points at each instant in time. One labels these
co-ordinate points pj , such that the rows of X are given by pT

j . Thus one has

Xv=[vTp1, vTp2, . . . , vTpN ]T.

Each element of the vector Xv consists of the projection of each co-ordinate point pj onto
the unit vector v, giving its distance along the direction of v from the origin. Thus, the
quantity (1/N)vTXTXv=(1/N) (Xv)TXv= l equals the mean squared distance of
co-ordinate data projected along the axis of v. The eigenvectors, or proper orthogonal
modes, then optimize the mean squared distances of data along an orthogonal basis. In
mechanical systems, distances squared are associated with energy. In fluids, velocities are
measured, and the mean squared values would be associated with kinetic energy. Hence
one has an interpretation consistent with the known property that the POMs indicate the
optimal energy or power distributions in the data [3].

Furthermore, it turns out that the POMs coincide with the principle axes of the ellipsoid
of inertia formed by this ‘‘mass’’ distribution. This can be seen by revisiting the correlation
matrix built from M sensor displacements, xi . By labelling each sample as xij , where
j=1, . . . , N are the time indices, the elements of the correlation matrix then have the form

Rik =
1
N

s
N

j=1

xij xkj .

If each data has unit mass, then NR is related to the matrix representation of the
Mth-order moment-of-inertia tensor J by NR= rIM − J, where r=aN

j=1 aM
i=1 x2

ij is the
sum of distances of the data from the origin, and IM is the M×M identity matrix.
Incidently, r=trace (NR)=aM

i=1 Nli . The eigenvalues of J indicate the principal
moments of inertia ai e 0, and the eigenvectors of J satisfy Jf= af. Then

NRf= rIM f− Jf= rf− af=(r− a)f.

Therefore the principal axes of inertia are eigenvectors of R and thus coincide with the
POMs. Furthermore, the POVs are related to the principal moments of inertia by
Nli = r− ai , for i=1, . . . , M. This means that the axis corresponding to the largest
proper orthogonal value, which is associated with the largest mean projected distance of
data, corresponds to the axis about which one has the smallest moment of inertia.

4. NON-LINEAR MODES

A non-linear normal mode can be viewed as an invariant manifold in the state-space
description of a system [12]. Proper orthogonal decomposition, as formulated here, is
employed on measurements of the displacement co-ordinates, rather than measurements
of full states. (However, as mentioned above, in some cases POD has been applied to full
state-variable measurements, as long as it is possible to obtain them.) For this discussion,
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the situation for which the motion is of a single, pure, synchronous non-linear mode is
considered. Here ‘‘synchronous’’ means that all displacement co-ordinates reach their
extreme values simultaneously. One also assumes that the dynamics on the invariant
manifold, when projected onto the co-ordinate space, does not show any hysteretic
behavior in the co-ordinate space during motions.

In such case, the data accumulates on a non-linear curve in the co-ordinate space. The
POMs are thus the principal axes of inertia of these data as if they were points on a scaffold
defined by the non-linear modal curve. The principal axes of an ellipsoid of inertia optimize
the squares of the distances of the particles to the axes. Thus, the POMs could be viewed
in the least squares sense as an optimization of the ‘‘error’’ in the choice of a linear
representation of the non-linear normal mode, under the constraint that the linear
representation goes through the origin of the co-ordinate system. This differs from
the typical application of least squares in that the optimized distances associated with the
POMs are perpendicular distances, rather than errors defined through one of the
co-ordinates only (as in fitting a curve y=mx to (xi , yi ) data, for which the errors y− yi

are minimized). The proper orthogonal values, as do the relative magnitudes of the
principal moments of inertia, hint at how much the data deviates from the linear
approximations suggested by the POMs. The POMs depend on the invariant manifold,
and on how the data populates the manifold.

If the motion is on a higher dimensional invariant manifold, for example if more than
one synchronous non-linear modes are active, or if the non-linear normal mode is not
synchronous, then the POMs would again represent principal axes of the ellipsoid of inertia
associated with the sampled data. However, the relationship between the POMs and the
‘‘best fit’’ of the non-linear normal modes is obscured.

Berkooz et al. [3] commented that although the proper orthogonal decomposition is a
linear process, it ‘‘may not do the physical violence of linearization methods’’. Indeed, if
one were to project the differential equations onto the dominant POM, as in the present
two-degree-of-freedom example, the gist of the non-linearity would be preserved in that
projection, which merely follows, in an optimal way, the modal contour.

4.1.  - 

An example of two unit masses which are spring connected between two walls is shown
in Figure 2. The first mass is connected to a wall through a non-linear spring which behaves
according to Fnl = x3. The other mass is connected to the other wall through a linear spring
of unit stiffness. The coupling spring between the two masses also has unit stiffness. The
equations of motion are

ẍ1 + x1 − x2 + x3
1 =0, ẍ2 − x1 +2x2 =0. (6, 7)

Figure 2. The model of a system with a non-linear normal mode with m= k=1. kn represents a non-linear
spring through which the force is x3.



20

–20

x1
x 2

–4

(a)
10

0

–10

–2 0 2 –4

(b)

–2 0 2

. .   . 614

Figure 3. ‘‘Synchronous’’ motion data for a non-linear two-mass system. The straight solid line represents the
orientation of the dominant proper orthogonal mode based (a) at the origin, and (b) at the mean of the data.
The dashed line in (a) depicts the first mode of the linearized system.

The non-linear normal modes in this system were analyzed by Shaw and Pierre [12] for
small motion. A large non-linear normal mode motion has been simulated, and x2 versus
x1 plotted during the oscillation, as shown in Figure 3. The displacements are confined to
a curve, indicating synchronicity in the sense that x1 and x2 reach their maxima and minima
simultaneously. The POM associated with the most ‘‘power’’, calculated from 200 data
representing about four periods of oscillation, is plotted as a solid line along with the
(x1, x2) data. This is shown in Figure 3(a) for data which is not mean adjusted. Thus, this
POM indicates the axis of the smallest moment of inertia, and the largest mean squared
projection, based at the origin. The first normal mode (the only mode in which the masses
are moving in phase) of the linearized system is plotted as a dashed line to emphasize its
deviation from the POM and the associated large-amplitude non-linear normal mode. The
POM shown in Figure 3(b) was computed for data for which the mean was subtracted.
Thus, the POM represents the principal axis of inertia based at the mean of the data in
the plot.

5. NUMERICAL ANOMALIES

If the data forms an ellipsoid of inertia for which two of the principal moments of inertia
are the same, the representation of the associated axes of inertia is not uniquely defined.
This can cause problems in determining the true modal vectors.

In section 2.2, it was mentioned that an example which produced poor results had been
encountered. In that example, the set-up was similar to that of Figure 1, except that the
masses were uniform so that the mass matrix was the identity, and the third mass was
attached to a second wall with a fourth spring, such that the stiffness matrix was

K= & 2
−1

0

−1
2

−1

0
−1

2'.
The initial conditions were x0 = (1, 0, 0)T. Two of the eigenvalues of the correlation matrix
R, as obtained from Matlab, differed substantially from the system modes. However, when
the modes were multiplied into the correlation matrix, such as Rvj , the result was ‘‘nearly’’
parallel to vj .

It turns out that the initial conditions were such that two of the modal co-ordinates had
the same amplitude of vibration, and the ellipsoid of inertia represented by the distribution
of the solution curves in the displacement–co-ordinate space had two equal principal
moments of inertia. Indeed, the proper orthogonal values for that example, with N=400



   615

samples and h=0·1493, were 0·1233, 0·2505, and 0·1274. The POVs 0·1233 and 0·1274
are finite data approximations of identical values for which the axes of inertia, and hence
the proper orthogonal modes, would not be uniquely defined. However, the true modal
vectors would still represent a choice of proper orthogonal vectors. Although the POVs
showed slight deviation, Matlab computed a set of POMs which differed from the modal
vectors. Still, the modal vectors very nearly satisfied Rv= lv.

The occurrence of this situation can be detected simply by checking for nearly repeated
proper orthogonal values.

6. CONCLUSION

Some relationships between the proper orthogonal modes and modes of vibration have
been sketched. This compliments existing statistical interpretations of POMs with physical
and geometric interpretations.

For the linear undamped free-vibration case formulated as a symmetric system with an
identity mass matrix, the POMs represent the linear modes of vibration. This is also true
for modally damped linear systems. Since the POD is so simple to implement, perhaps it
will replace traditional modal analysis in some experimental applications. However, in
order to describe mode shapes in the displacement co-ordinates, the mass matrix must be
known.

The principal axes of the distribution of data coincide with the POMs. The POVs
indicate the mean squared projections of the data onto these axes, and are related to the
principal moments of inertia about axes based at the origin of the co-ordinate system,
which are the sums of the squares of the distances of data from the principal axes. Thus,
for the case of a ‘‘synchronous’’ non-linear normal mode, the dominant POM represents
an optimal fit of a linear mode to the data on the non-linear normal mode in the sense
that the distances of data from the POM axis are optimized.

Our results were tested on low-dimensional numerical examples. Further work might
examine the robustness of these ideas as the numbers of degrees of freedom get large, and
as noise is introduced to the data. Other future work might address the recovery of
travelling wave modes, or their out-of-phase components, in systems with generalized
damping. Also, studies might focus on POD for systems which have full state
measurements, and deal with implications regarding the recovery of generalized modes in
the state space, as in the estimation of higher dimensional invariant manifolds in non-linear
systems.
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